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1

CHAPTER 1

INTRODUCTION

As the data acquisition methods advance rapidly, a new concern is to deal with the huge

amount of data and take the desired information out of the acquired data. This necessitates the

data mining techniques such as face detection, medical image analysis, deformation detection,

shape classification and shape recognition. The image processing techniques always use the

acquired images intensity as the classifying measure; moreover, some limiting constraints such

as the rectangular frame of the image may simplify the complexity of the problem. In contrast,

in the shape classification techniques various measures such as normal vector, mean curvature,

Gaussian curvature, and geodesic length can be used as the classifiers. In addition, the shape

topology and connectivity in the shape classification are among the issues which need to be

addressed and may make the shape classification problem more intricate.

There are actually two points of view towards the shape classification. From a physical

point of view, the degrees of freedom are governed by physical principles giving intuitively

meaningful behavior upon the geometric substrate. For instance, the deformable models try to

approximate the object deformation by minimizing the summation of the deformation energy

causing the internal elastic forces, and the external potential energy function under constraint

of smoothness and symmetry of the model in the Lagrangian setting ([66]). In contrast, from

a geometry point of view, the shape abstraction is necessary to manage efficient matching of

high dimensional shapes. Indeed the classifier must extract meaningful information from the

shapes while making the weakest possible assumption about observed shapes ([94]).

The traditional perspective towards the shape abstraction is mainly based on the machine

vision techniques in which a property is extracted from the surface; this feature extractor called

shape descriptor may extract either global features like boundary or volume of the shape,

convex-hull packing and hull compactness; or the local features like Gaussian curvature, mean
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curvature and edge length, which are invariant under similarity transformations. Then a metric

which better represents the desired property is constructed based on bending energy or dif-

ference in curvature. At the end by minimizing the energy functional the shape is classified

([24]). However, another approach is to remove the similarity transformations from the shapes

beforehand, and work with the full geometry of the shapes. Therefore, the results are more

interpretable with the more geometrical information [10]. Towards this end, the modern ge-

ometry uses another concept named shape space, where coordinates of points in this space

represent generalized properties associated with various geometrical properties. In the other

word, each group of shapes corresponds to the same point in shape space.

Basically, the boundary of an object, a closed contour in 2D or a compact surface in 3D,

defines the shape of an object. Then, k landmarks are picked from the shape to constitute

a configuration of k points. Most of the geometrical information of the shape is preserved, if

enough landmarks are picked from the continuous shape [61] [51]. One of the pioneer methods

in landmark based shape analysis was proposed by Kendall [55] [56] showing that a specific

metric, Procrustes distance, leads to a Riemannian manifold for planar triangles. Thus, the set

of all planar triangles is the quotient manifold under the group of rotations, which is isometric

to the surface of a 2D sphere of radius 0.5.

Depending on the application, the appropriate shape space should be constructed. For

instance, left and right hands are reflected to each other, thus the reflection shape space better

represents their similarity. Further, a projective shape space reveals the similarity between

different photographs of the same object taken from different angles.

To carry out shape analysis on the shape space of interest, some appropriate estimation and

inference tools are developed on general non-Euclidean manifolds. For instance, mean and

variation defined for a general probability distribution on the manifold are employed to perform

nonparametric inference on manifolds [9], and then from a random sample on the manifold, the

sample estimates are obtained and their properties like consistency and asymptotic distribution
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are examined ([7], [8], [6], [5]).

1.1 Research Approach and Contributions
In this study, two goals are pursued by definition of shape space,

-Deformation interpolation: During the deformation some samples are acquired from the

object. However, to increase temporal resolution of the deformation, the interpolation seems

to be inevitable. As the deformation samples are projected into shape space, the deformation

becomes a curve in the highly dimensional shape space, which is called deformation path.

Therefore, the problem of shape deformation interpolation is converted to interpolation of a

curve on a high dimensional manifold, whose mathematical foundations are more developed.

Furthermore, depending on the shape space, different interpolations are achieved.

-Deformation classification: Once the deformations are mapped into shape space, their ge-

ometrical differences which we are not interested in are removed. This makes them comparable

as they are normalized in a common coordinate system. As a result, by comparison of the defor-

mation paths on the shape space manifold, they can be classified easier than comparison of the

original deformations in the 3D Euclidean space. This has applications in the classification of

deformations such as the heart deformation. For instance, as opposed to the deformable mod-

els, one can classify the heart deformation just based on the geometrical information, without

being aware of the underlying physical rules causing the deformation.

Towards these goals, first the desired topological and geometrical properties of an object

are recognized to ease comparison and classification of the surfaces. This requires that a shape

descriptor be defined. And then a metric is introduced regarding the characteristics of motions

being studied. Although the shape descriptor captures the discriminating properties of objects,

the similarity is a subjective issue. In the other word, one may prefer the topological prop-

erties as being more differentiating measures than minor visual differences. In the next two

sections, the concepts of shape descriptor and metric will be reviewed briefly along with their

characteristics.
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1.1.1 Shape Descriptor

To extract the geometrical and topological information the shape descriptor is defined pre-

serving the properties such as the transformations which the shape is invariant to. Thus the

shape descriptors can be classified regarding to these transformation groups. Topological de-

scriptors are global and less discriminating, yet the geometrical descriptors are local and more

discriminating but need more storage, meaning they are computationally expensive. The shape

descriptors should be as less sensitive as possible to the additive noise, and provide partial

shape matching, i.e., only one part of the model information is compared to some other parts

of other models. Three commonly used shape descriptor groups are,

-Feature based shape descriptors: These methods take into account only the pure geometry

of the shape. Different features that these methods extract are global feature ([104], [20], [53]),

global feature distribution ([74], [72]), spatial map ([2], [54], [71]), local feature ([85], [91],

[60]).

-Model graph shape descriptors: These methods attempt to extract a geometric meaning

from a 3D shape using a graph showing how shape components are linked together, e.g., model

graphs [17], Reeb graphs ([90], [30]), and skeletons ([11], [39]).

-View based shape descriptors: If two models look alike from every angle they would be

similar. The obvious application of these descriptors is to choose some 3D models based on

their similarity to some 2D images. The distance between two descriptors is defined as the

minimum L1-difference, taken over all rotations ([29], [15]).

-Deformation based shape descriptors: In this descriptor the similarity is measured based

on the deformation needed to register two shapes together. This descriptor can be used to

define the evolution of a shape over time [4]. These shape descriptors are classified by the

transformation groups, to which they are invariant.

The interested reader is referred to [92] to get more information on the shape descriptors.
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1.1.2 Metric

Measuring the similarity of two objects necessitates definition of a similarity measure. If d

is a similarity measure on a set X, then it should hold the following properties,

i. identity: d (x, x) = 0,∀x ∈ X,

ii. positivity: d (x, y) > 0,∀x, y ∈ X,

iii. symmetry: d (x, y) = d (y, x) ,∀x, y ∈ X,

iv. Triangle inequality: d (x, z) ≤ d (x, y) + d (y, z) ,∀x, y, z ∈ X,

v. Transformation invariance: d (g (x) , g (y)) = d (x, y) ,∀x, y, z ∈ X and g ∈ G, where

G is the desired transformation group.

Some of the above properties may not be met by some similarity measures but if all the

properties are satisfied by a similarity measure, it is called a metric. The similarity measures

obeying (i), (iii) and (iv) are called pseudo-metric and those satisfying (i), (ii) and (iii) are

named semi-metric [96]. The similarity between two feature vectors is reflected in the distance

between corresponding points in feature space [45]. Some commonly used metrics in the

literature are,

1. Lp (Minkowski) distance: for two points x and y is defined as,

Lp (x, y) =

(
N∑
i=0

|xi − yi|2
) 1

p

,∀x, y ∈ RN .

2. Hausdorff distance: determines the distance between two point sets of different sizes.

The directed Hausdorff distance is defined as,

~h (X,Y) = max
x∈X

min
y∈Y

d (x, y) ,

where X, Y are two point sets. The final Hausdorff metric would be,

H (X,Y) = max
[
~h (X,Y) ,~h (Y,X)

]
.
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3. Correlation metric: determines the angle between two points in the feature space and is

defined as follows,

C (X,Y) =

∑N
i=0 (xi − x̄) · (yi − ȳ)√∑N

i=0 (xi − x̄)2 ·
∑N

i=0 (yi − ȳ)2
.

As a deformation is shown by a curve in shape space, the length of the curve joining two

points yields the similarity between two shapes according to the property which shape space

preserves. Lipman et al. [62] estimate the deformation between two isometric manifolds by

minimizing a geometric expressing functional. Huang et al. [41] suggest a constrained energy

function based on the gradient domain techniques for deformation estimation. Zhou et al.

[105] introduce the Volumetric Graph Laplacian technique to minimize a quadratic energy

function preserving the volumetric details during the 3D deformation. Huang et al. [40] present

a geometrical potential function with constant stiffness matrix to speed up the deformation

approximation. Funck et al. [28] minimize an energy function based on the divergence free

vector field to get a smooth, volume preserving deformation. Xu et al. [100] deal with the

deformation as gradient field interpolation, and propose a novel shape interpolation approach

based on the Poisson equation.

In contrast to the aforementioned methods, the geometric structure presented in [58] com-

putes all smooth groups of diffeomorphisms mapping two objects together. The desired char-

acteristics to which shape space is invariant can be induced by choosing an appropriate geo-

metric structure. Completely invariant to the conformal transformations, a conformal structure

based on the period matrix and related algorithms to calculate the period matrix for manifolds

with arbitrary topologies are introduced in [35], [34]. Wang et al. [98] further provide a 3D

matching framework based on the least squares conformal maps. In [102], a shape space is

introduced to conformally map 2D smooth curves. To induce conformal mappings in 2D and

quasi-conformal mappings in 3D, the Green Coordinates [63] are used in the cage-based space



www.manaraa.com

7

deformation estimation. Hurdal et al. [42] and Haker et al. [36] computed quasi-conformal

and conformal maps of the cerebral cortex, respectively.

Continuous Ricci flow [37] conformally deforms a Riemannian metric on a smooth surface

such that the Gaussian curvature evolves like a heat diffusion process. Eventually, the Gaussian

curvature becomes constant and the limiting Riemannian metric is conformal to the original

one. In discrete case, the circle packing metric [19] determines the discrete Gaussian curvature,

and the discrete Ricci flow [48], [16] conformally deforms the circle packing metrics with

respect to the Gaussian curvatures. In [50], the geodesic lengths of homotopy classes, measured

by Hyperbolic Uniformization metric, is used to determine the coordinates of each conformal

class in the Teichmüller shape space to classify the shapes with negative Euler number. In fact,

surfaces with the same conformal class share the same Uniformization metric and can be used

to classify the surfaces [49]. During the deformation, the Gaussian curvature at each point on

the manifold may change according to the deformation characteristics. Based on the spectral

geometry, the eigenvalues of the Laplace-Beltrami operator can serve as numerical fingerprints

of 2D or 3D manifolds [77], which can also be used to build shape space invariant to isometric

deformations.

1.2 Dissertation Organization
The following gives a brief description of the next chapters:

Chapter 2 explains the concept of shape space and different kinds of shape spaces in the

literature.

Chapter 3 represents a new quasi-conformal metric based on the structure in [58]. This

metric is employed to construct a new quasi-conformal shape space which can compare and

differentiate different deformations. The heart anatomy and the conventional heart diagnostic

methods such as ECG, Ultrasound, x-ray, are reviewed along with the conventional measures

for the cardiac diagnosis. As of the goals of this study is to classify the deformation of the

heart based on the geometrical information, we apply the proposed classification framework to
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classify the deformation of the left ventricle in some normal and abnormal subjects.

Chapter 4 presents a new shape space based on the medial surface. Indeed, the medial

surface estimated the changes of the thickness of the shape, which is used as a valuable measure

to diagnose the heart. Not only can this method classify the left ventricle deformation, but also

it spots the abnormality on the abnormal left ventricle.

Chapter 5 draws a conclusion and explains the drawbacks of the proposed methods along

with the future work.



www.manaraa.com

9

CHAPTER 2

SHAPE SPACE

In this chapter, the concept of shape space as a non-linear Riemannian manifold and the

proposed shape spaces in the literature are explained in details. Different shape spaces are

categorized based on the transformation groups acting on them. Furthermore, the geodesic

distance on each non-linear shape space manifold is measured by specific metrics which are

compatible with the intrinsic geometry of the shape space manifold.

2.1 Introduction
The current shape analysis methods include analysis of the Cartesian coordinates of land-

marks which preserve all the geometrical information and can be used to measure the shape

features such as the angle between two vectors or the length of lines. Some basic geometric

spaces used in the shape analysis are as follows:

1. Landmark space (figure space): Euclidean space in which landmarks are digitized and

plotted.

2. Configuration space (form space): Euclidean Space in which landmark configurations

are represented by single points (Fig. 2.1).

3. Preshape space: Non-Euclidean space in which configurations are plotted after scaling

and translation.

4. Shape space: Non-Euclidean space in which configurations are plotted after the trans-

formations preserving the intended geometrical properties. Thus, shape space has fewer

dimensions than the configuration space. For instance, if we have k landmarks of m

dimensions, in its corresponding similarity shape space,

• 1 dimension lost in setting common scale.
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Figure 2.1: A 2D Landmark space (left) vs. its corresponding 20 (=2× 10) dimensional Con-
figuration space

• m dimensions lost in translating to common centers.

• m(m− 1)/2 dimensions lost in rotation to common orientation.

Thus the dimensionality in shape space is km−m− 1−m(m− 1)/2.

5. Tangent space: Euclidean approximation of a shape space.

A shape metric describes the relationship between the distance in shape space and Eu-

clidean distance in the original plane, which construct a Riemannian manifold [14]. The

Hausdorff distance [43], the strain energy [82] and the Procrustes distance [22] are among

the commonly used shape metrics.

2.2 Geometry of Shape Manifolds
Let (M, g) be a complete connected Riemannian manifold of dimension d with metric

tensor g. Although some differentiable manifolds M exist as surfaces or hypersurfaces of the

Euclidean space, e.g., a sphere Sd =
{
p ∈ Rd+1 : ‖p‖ = 1

}
, the shape space is not of this type

of manifolds. Indeed, the shape space is a quotient space of a Riemannian manifold N under

the action of a similarity transformation group G, i.e., M = N/G. The intrinsic analysis on

M makes use of the natural choice of the geodesic distance, in contrast with extrinsic analysis

which maps M into the Euclidean space and computes the distance [38], [9].

The tangent space at a point p on N is decomposed into a vertical subspace Vp which
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is isomorphic to the tangent space of G, and a horizontal subspace Hp which is orthogonal

to Vp and can be identified with the tangent space of M. Let G act as isometries of N, and

π : N −→M. Then, if dπ : TpN −→ Tπ(p)M is the differential of the projection π; then,

〈dπ (u) , dπ (v)〉π(p) = 〈u, v〉p ,

where u, v ∈ TpN.

2.3 Different Kinds of Shape Space

2.3.1 Similarity shape space and Kendall’s Shape Space Σk
m

Consider a 2D or 3D configuration space having k landmarks. Its similarity shape is what

remains after removing the effects of translation, scaling and rotation. The space of all simi-

larity shapes forms the Similarity Shape Space Σk
m, where m is the dimension of the Euclidean

space.

Kendall ([55], [56]) removed location and size differences between sets of point coordinates

by centering each configuration on the origin and scaling each configuration to unit size as

follows,

X’1 = 0,

and

tr (XX’) = 1,

where size is defined as the sum of squared, Euclidean distances from each vertex to the cor-

responding vertex of the centriod configuration, X is a k × m matrix of the coordinates of k

vertices in Rm, 1 is a p × 1 vector of 1’s, and 0 a k × 1 vector of 0’s. The resulted config-

uration is called the preshape and lies in the unit sphere Skm. To remove differences due to

special orthogonal rotations, the great circle distance d between each pair of configurations is

minimized, which yields the geodesic distance on the shape space.
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Assume π : Skm −→ Σk
m,

ρ (π (x) , π (x)) = inf
R∈SO(m)

d (Rx, y) ,

where x, y ∈ Skm, and ρ is the Procrustes angular (great circle) distance between the two

shapes, which defines Kendall’s shape space Σk
m of dimension mk −m − 1 −m (m− 1) /2

which is a Riemannian manifold. Hence, Σk
m = Skm/SO (m), SO (m) is the group of m ×m

rotation matrices. The geodesic distance is the length of the great circle connecting x and y

defined as,

d (x, y) = arccos
(
tr
(
yxT)) .

In the special case of planar triangles, Σ3
2 is isometric to the surface of a 2D sphere of

radius 0.5 (Fig. 2.2). Kendall’s development of shape theory is based on the Procrustes metric

between pairs of configurations. An approach used in practical applications of shape analysis,

is based on the least-squares superimposition, called Ordinary Procrustes Analysis.

Ordinary Procrustes Analysis (OPA)

Figure 2.2: A view of Kendall’s shape space for 2D triangles shows the mapping of some
random triangles.
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Let X1 and X2 be two k configurations, related to each other as,

X2 = α · (X1 + D) · R + T,

Where α is a scale factor, R ∈ Rm×m is rotation matrix, D ∈ Rk×m is the matrix of shape

difference between the two configurations, T ∈ Rk×m is the translation matrix. Now the trans-

lation and rotation matrices are calculated to minimize the sum of squared distances between

corresponding vertices of X1 and X2, that’s,

D2
P = tr

(
DDT

)
,

where DP is called Partial Procrustes distance. In [87], Slice shows that Procrustes superimpo-

sition does not lead to the Kendall’s shape space, but to the surface of a hemisphere of radius

1 (Fig. 2.3). In the case of planar triangles, this space has a simple geometric relationship to

Kendall’s shape space.

Figure 2.3: A view of the hemisphere of Procrustes-superimposed triangles representing the
mapping of the triangles from Fig. 2.2.
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Figure 2.4: Procrustes distance (ρ) is not the shortest distance between two forms. Shorter
distance is length of chord connecting two forms (DP ). Shortest distance found by relaxing
size constraint on one form, reducing to smaller centroid size in position B (DF ).

In the kendall’s shape space, each configuration is scaled to one (α=1), which does not

minimize DP , in contrast, here different values are assigned to α to minimize DP . It is shown

that α = cos (ρ) minimizes DP . which is called full Procrustes distance (DF ) (Fig. 2.4).

2.3.2 Planar Shape Space Σk
2

A 2D configuration space having k landmarks can be presented on a complex plane as

{zj = xj + iyj, 1 ≤ j ≤ k}. The location, size and orientation differences are removed as,

{λ · (zj − z̄) , 1 ≤ j ≤ k} ,

z̄ =
1

k
·

k∑
j=1

zj,

where λ = reiθ, and r is the scaling factor and θ is the rotation angle. Each configuration is

a complex line passing through z̄. The planar shape space is the set of complex lines in Ck−1

passing through origin, which has the structure of the complex projective space CP k−2.
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Assume

u =

{
(zj − z̄)

‖zj − z̄‖
, 1 ≤ j ≤ k

}
,

is the preshape of the configuration, which lies on the CSk−1, where

CSk−1 =

{
u ∈ Ck :

k∑
j=1

uj = 0, ‖u‖ = 1

}
.

Then the mapping π : CSk−1 → Σk
2 is as follows,

π (u) =
{
eiθu,−π ≤ θ ≤ π

}
,

which is a curve on the unit sphere CSk−1. The geodesic distance in the planar shape space is

as follows,

ρ (π (u) , π (v)) = inf
θ∈(−π,π]

d
(
u, eiθv

)
,

where u, v ∈ CSk−1, and d is the geodesic distance on CSk−1,

d (u, v) = arccos
(
Re
(
v̄Tu

))
.

One can determine the distance between two preshapes u and v by trying to minimize the

Euclidean distance between them as rotate one of them, that’s,

dP (u, v) = min
θ∈(−π,π]

∥∥u− eiθv∥∥ ,
dP is the Partial Procrustes distance on the planar shape space.

2.3.3 Reflection shape space RΣk
m

Let X ∈ Rk×m be a k configuration and z ∈ Skm be its preshape after centering each

configuration on the origin and scaling to unit size. The Reflection shape space of z is as
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follows,

σ (z) = {Az : A ∈ O (m)} ,

where O (m) is the group of m ×m orthogonal matrices. For the set of nonsingular z ∈ Skm,

RΣk
m = Skm/O (m) is a Riemannian manifold of dimension mk −m− 1−m (m− 1) /2.

As aforementioned, Σk
m = Skm/SO (m). Therefore, RΣk

m = Σk
m/G, where G is the group

of reflections which maps a configuration to its reflected configuration. Therefore, the similar-

ity shape space Σk
m and the reflection shape space RΣk

m have the same Riemannian metric as

they are locally alike.

The geodesic distance between two preshapes u, v ∈ Skm is as follows,

ρ (π (u) , π (v)) = inf
F∈O(m)

d (u,Fv) ,

where

d (u, v) = arccos
(
tr
(
uvT

))
.

The full procrustes distance is,

dF (u, v) = inf
α∈R+,F∈O(m)

‖u− αFv‖ .

It is proven that the infimum is achieved [59],

dF (u, v) =

1−

(
m∑
i=1

λi

)2
 1

2

,

where λi is is the ith eigenvalue of the matrix uvT . Accordingly, the partial procrustes distance

is,

dP (u, v) = inf
F∈O(m)

‖u− Fv‖ .
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It is proven that the infimum is achieved,

dP (u, v) =
√

2

[
1−

m∑
i=1

λi

] 1
2

.

2.3.4 Affine shape space AΣk
m

The orbit of the configuration space under affine transformations constructs the affine shape

space, AΣk
m,

AΣk
m =

{
σ (x) , x ∈ Rm×k} ,

where

σ (x) = {Ax+ b : A ∈ GL (m,R) ,b ∈ Rm} ,

GL (m,R) is the general linear group in Rm of all m×m nonsingular matrices.

Two centered configurations x, y ∈ Rm×k correspond by a non-singular transformation,

i.e., (y − ȳ) = A (x− x̄). The subspace of the centered configurations is H (m, k) which is a

Euclidean manifold of dimensionm (k − 1); therefore, the affine shape space is the quotient of

this space under the general linear transformations, i.e., AΣk
m = H (m, k) /GL (m,R) having

m (k − 1)−m2 dimensions.

2.3.5 Projective Shape Space

All the lines in Rm+1 passing through the origin constitute the real projective space RPm.

The elements of RPm are presented as,

[x] = {λx : λ 6= 0} ,

where x ∈ Rm+1 {0}.

The projective transformation α in RPm is α [x] = [Ax], A ∈ GL (m+ 1,R). The group

of all projective transformations is PGL (m).
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As each line passing through the origin can be represented by its intersection points with

the unit sphere Sm, RPm = Sm/G, where G contains both identity and antipodal maps. The

geodesic distance between [u] , [v] ∈ RPm where u, v ∈ Sm is,

ρ ([u] , [v]) = min [d (u, v) , d (u,−v)] ,

where d (u, v) = arccos
(
uTv

)
. As a result, the projective shape of a k configuration is,

α (x) =
{

(α [x1] , · · · , α [xk]) : α ∈ PGL (m) , xi ∈ Rm+1, k > m+ 2
}
.

A projective frame is an ordered set of m+2 points in RPm which is in general position,

that’s, their linear span is in RPm. Let G (m, k) denote the set of all ordered systems of k points

p1, · · · , pk for which p1, · · · , pm+2 is a projective frame. The shape of all k configurations in

general position is the projective shape space PΣk
m; therefore, PΣk

m = G (m, k) /PGL (m). It

is proven in [65] that there is a diffeomorphism between PΣk
m and a product of real projective

spaces (RPm)k−m−2.

2.3.6 Isometric shape space

As a non-rigid object deforms over time, the corresponding points in shape space form a

curve on the shape space manifold, called deformation path (Fig. 2.5).

Depending on the geometrical property which the shape space is invariant to, different

deformation paths can be achieved. Here, we are interested in the isometric deformations,

that’s, the lengths of edges are preserved during the deformations.

Let G be the space of all immersions having a fixed connectivity in 3D Euclidean space, and

M ∈ G be an immersion at time t, which contains N vertices, thus M is a vector in R3N . Since

M deforms smoothly, the deformation path at the vertex p ∈M is a continuously differentiable

function, fp (t) : [0, 1] → R3, and the deformation function of M is f (t) : [0, 1] → R3N . Let

TMG be the tangent space of G at the point M. Thus X ∈ TMG assigns a deformation vector
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Figure 2.5: The shape deformation corresponds to a curve on the shape space manifold.

Xp (t) = ∂p (t) /∂t to every vertex p at time t. Here we define an as Isometric as possible

space, which does not impose strict isometricity on the deformation, in contrast, it discourages

non-isometricity of the deformation. As mentioned, the edge length is constant during the

deformation,

‖p (t)− q (t)‖2 = Const,

where (p, q) is an edge on M; therefore,

∂ ‖p (t)− q (t)‖2

∂t
= 0⇒ 〈Xp − Xq, p− q〉 = 0,

where 〈·, ·〉 is the canonical inner product in R3.

The norm of the deformation field X on the mesh M is a measure of non-isometricity of the

deformation,
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‖X‖IM =
∑

(p,q)∈M

〈Xp − Xq, p− q〉2 ,

which shows the distance between two poses of the shape at two time points. The final

metric is defined as the inner product of two vectors fields X and Y on the tangent space of G,

〈〈X,Y〉〉IM =
∑

(p,q)∈M

〈Xp − Xq, p− q〉 · 〈Yp − Yq, p− q〉 .

This is a symmetric and bilinear function which defines a semi-Riemannian metric on G

[58]. [99] proposes a shape space approximating the most isometric model by linearly interpo-

lating in shape space.

2.3.7 Rigid-body shape space

A deformation is Rigid body if the following relation holds for the deformation field X (t),

Xp (t) = k1 (t) + k2 (t)× p (t) ,

Where k1 (t) and k2 (t) are some smoothly varying vector in R3. As in the Kendall’s shape

space, the Rigid-body component of the deformation is extracted from the whole deformation

by minimizing the following functional,

min
k1,k2

∑
p∈M

〈Xp (t)− k1 (t)− k2 (t)× p (t) ,Xp (t)− k1 (t)− k2 (t)× p (t)〉 . (2.1)

If k̂1 (t) and k̂2 (t) minimize Eq. 2.1, the Rigid body metric is defined as,

〈〈X,Y〉〉RM =
∑
p∈M

〈
Xp (t)− k̂1 (t)− k̂2 (t)× p (t) ,Yp (t)− k̂1 (t)− k̂2 (t)× p (t)

〉
.

which is a linear and symmetric real valued function [58].
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Figure 2.6: A chart is a homeomorphism from a neighborhood on the manifold M to another
neighborhood on the simple topological space X, which is called the local coordinate on X

2.3.8 Conformal map

In a simply connected surface any closed curve is the full boundary of some portion of

the surface (The Riemann sphere, the finite complex plane, the unit disk), in contrast with a

multiply connected surface which doesn’t hold this property (annulus) [59].

If M is a real, n-dimensional topological manifold, each point p ∈ M has an open neigh-

borhood Uα for which we can find a homeomorphism ϕα : Uα → Vα to an open ball Vα

in a simple space X such as the Euclidean space. Such a homeomorphism is called a coor-

dinate chart around p. A collection of charts which cover the manifold is called an atlas,

A = {(Uα, ϕα)} (Fig. 2.6).

Charts may overlap such that a portion of the manifold is mapped by different charts. A

transition function Tαβ : X → X maps an open ball Vα to Vβ , where they overlap in X, that’s,

Tαβ (v) = ϕβ ◦ ϕ−1
α (v) where v ∈ {Vα ∩ Vβ}. The (X, G) is a structure on the surface M,

where G is the group of all transition functions. For instance, a spherical structure contains the
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local coordinates on the sphere along with all rotation functions as the transition functions.

The atlas might contain a collection of maps from M to the Euclidean space. If the

Euclidean plane is identified with the complex plane, the topological atlas is a complex at-

las, and the corresponding structure is called the complex structure. A complex function

f : (x, y)→ (u, v) which satisfies the Riemann-Cauchy equation,

∂u

∂y
= −∂v

∂x
,
∂u

∂x
=
∂v

∂y
,

is called a holomorphic function. A surface M, whose all transitions functions being holo-

morphic is called Riemannian surface, and its atlas is called conformal atlas. The maximal

conformal atlas is conformal structure of M. Let M1 and M2 be two Riemannian surfaces

whose local charts are ϕα and ψβ , respectively, and τ : M1 → M1 be a mapping between

two surfaces. If the mapping is always holomorphic, τ is called holomorphic map or confor-

mal map. A conformal map between two surfaces preserves the angles between curves on the

surface, and a conformal structure measures the angle [33].

2.3.9 Teichmüller shape space

Surfaces are conformally equivalent, if they can be conformally mapped to each other. All

conformally equivalent shapes constitute a conformal class. Each conformal class is assigned

one point in the Teichmüller shape space. Let M be a real, n-dimensional topological manifold,

S (M) be the set of all complex structures of M, and x0 ∈ M. The set of continuous functions

are called loops with the base point x0, L (M, x0). The fundamental group of M with base

point x0, π (M, x0) is,

π (M, x0) = L (M, x0) /h,

where h is the set of homotopy function of L (M, x0). Therefore, the fundamental group con-

tains the loops going around holes and handles and their combinations (Fig. 2.7).

Definition: PSL (2,C) is a group of isometries of the hyperbolic plane, which acts on the
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Figure 2.7: A pair of pants and its fundamental group containing three homotopy classes
{α, β, αβ}.

upper half plane by möbius transformations,

 a b

c d

 · z =
az + b

cz + d
.

Definition: Let G ⊂ PSL (2,C) act invariantly on an open disk D ⊂ Ĉ, that is, G (D) = D.

Then G is Fuchsian group if and only if,

1. G is a discrete group,

2. G acts properly discontinuously at each point z ∈ D,

3. The set D is a subset of the region of discontinuity of G.

The corresponding Fuchsian group G generated by möbius transformations is isomorphic

to π (M, x0), that’s,

i : π (M, x0)→ G,

where i (〈α〉) = g, i (〈β〉) = h, and i (〈αβ〉) = g ◦ h. These möbius transformations cover

the homotopy class of curves going around the handles and holes, and logk (g), logk (h), and
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Figure 2.8: The tangent space at a point p is the set of velocity vectors of all possible curves
passing through the point p on the manifold M.

logk (g ◦ h) are the lengths of the geodesic loops in the homotopic classes. k (g), k (h), and

k (g ◦ h) are the multipliers of the möbius transformations.

Now the Teichmüller shape space, T (M), is constructed as the set of the lengths of all

geodesic loops, e.g.,

T (M) = {k (g) , k (h) , k (g ◦ h)} ,

thus the Teichmüller space of the pair of pants is in R3
+.

2.4 Tangent Space
The tangent space TpM at a point p ∈M is the set of velocity vectors of all possible curves

passing through the point p on the manifold M. The collection of all tangent vectors to every

point on the manifold, called the tangent bundle. If ϕ : Vα → Vβ is a diffeomorphism between

two charts, the tangent vector v at the point q ∈ Vα is considered as a tangent vector Jϕv at the

point ϕ (q) ∈ Vβ , where Jϕv is the Jacobian matrix which represents a linear transformation.

Therefore, the tangent space is independent of the chart (Fig. 2.8).

2.4.1 Linearization of shape space

Since shape space is non-Euclidean, linear statistical procedures cannot be applied on such

spaces. To make the shape space linear, the shape space in a neighborhood can be projected

onto the tangent space (P : G→ TMG). For instance, there are three projection methods in the

Kendall’s shape space (Fig. 2.9).

1. Orthogonal projection: The point N ∈ UM is projected onto the tangent plane, that’s,
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Figure 2.9: The geometric relationship between the Procrustes hemisphere and Kendall’s shape
space for tangent space projections.

P
(
NKendall

)
= NKendall

Orth ∈ TMG. However, the points on both sides of the equator of

the Kendall’s sphere are mapped to the same point on the tangent plane, that’s,

P
(
NKendall

)
= P

(
NKendall
Reflect

)
= NKendall

Orth .

2. Stereographic projection: In this method, the south pole of the sphere is the reference

point of the stereographic projection, that’s, P
(
NKendall

)
= NKendall

Stereo ∈ TMG.

3. Orthogonal projection on the Procrustes hemisphere: In this method, the corresponding

point on the Procrustes hemisphere (NProc) is orthogonally mapped onto the tangent

plane (P
(
NProc

)
= NProc

Orth ), which is a unique, one-to-one mapping of points to a unit

disk.

It is shown that the third projection method provides better approximation of the distance

in the Kendall’s shape space than the others [79].
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CHAPTER 3

QUASI-CONFORMAL DEFORMATION

CLASSIFICATION IN SHAPE SPACE

In order to classify a group of shapes, some geometrical or topological features are ex-

tracted, and the shapes are classified based on the extracted features. During the deformation

of an object, its corresponding point in shape space will follow a non-linear curve on the shape

space manifold. The distance between two points in shape space determines the dissimilarity

of their corresponding shapes, regarding the geometrical property the shape space is invariant

to. This makes the shape space a useful tool to classify different deformations based on the

intended geometrical property.

3.1 Introduction
This chapter presents a novel approach based on the shape space concept to classify de-

formations of 3D models. In our method, a novel quasi-conformal metric is introduced which

measures the curvature changes at each vertex of the simplicial complex during the deforma-

tion. The deformation curve is obtained by minimizing an energy function to find the geodesic

curve connecting two shapes in the shape space manifold. The proposed classification frame-

work is very effective for the analysis of the intrinsic geometric changes of the shapes in shape

space. Our contributions in this chapter can be summarized as follows,

• we propose a novel framework for the effective analysis of dynamic shapes and shape

deformations in a low dimensional shape space,

• we propose a novel quasi-conformal metric to characterize and classify the quasi-conformal

deformations in shape space.

• We applied our classification framework on the left ventricle deformations. The experi-
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Figure 3.1: The conformal map preserves the angle between the perpendicular lines on the
chessboard when maps the chessboard to the face.

mental results show that our proposed metric can build a shape space which is compatible

with the intrinsic geometrical characteristics of the left ventricle deformation.

3.2 Conformal and Quasi-conformal metrics
Let Σ be a simplicial complex, and a mapping f : Σ → R3 embed Σ to the Euclidean

space, then M = (Σ, f) is a triangular mesh. Let the vertices {p, q, r} be three vertices of the

face ∆pqr of M and {Xp, Xq, Xr} be their corresponding deformations.

In the Riemannian geometry, each metric is defined as the inner product of two vector fields.

Suppose two different deformation fields as X and Y, the distance between them are measured

by 〈〈X,Y〉〉 in shape space. Based on the Riemannian metric definition, two conformal and

quasi-conformal metrics are proposed to construct the appropriate shape space.

3.2.1 Conformal metric

During the conformal deformation, the angle between two edges of each triangle will be

preserved (Fig. 3.1).

Let ∆pqr and ∆ṕq́ŕ be two triangles such that,
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Figure 3.2: The triangle on left is deformed to the triangle on right and the corresponding
angles are the same during the deformation.


ṕ(t) = p(t+ ∆t) = p(t) +Xp(t)

q́(t) = q(t+ ∆t) = q(t) +Xq(t)

ŕ(t) = r(t+ ∆t) = r(t) +Xr(t)

In the Euclidean geometry, if the edge lengths of a triangle are multiplied by the same

coefficient, the resulting triangle would have the same angles as the original one (Fig. 3.2).

Generalizing this idea, we try to preserve the proportion of two edge lengths of each triangle

during the deformation,
‖ṕ(t)− q́(t)‖2

‖p(t)− q(t)‖2 =
‖ṕ(t)− ŕ(t)‖2

‖p(t)− r(t)‖2 . (3.1)

Eq.3.1 yields the following relation,

‖ṕ(t)− q́(t)‖2 − ‖p(t)− q(t)‖2

‖p(t)− q(t)‖2 =
‖ṕ(t)− ŕ(t)‖2 − ‖p(t)− r(t)‖2

‖p(t)− r(t)‖2 ⇒

‖p(t+ ∆t)− q(t+ ∆t)‖2 − ‖p(t)− q(t)‖2

‖p(t)− q(t)‖2 =
‖p(t+ ∆t)− r(t+ ∆t)‖2 − ‖p(t)− r(t)‖2

‖p(t)− r(t)‖2 .

The numerator shows the changes of the squared edge length within ∆t. If ∆t → 0; then,

the numerator will be equal to the derivative of the squared edge length, that’s,
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lim
∆t→0

‖p(t+ ∆t)− q(t+ ∆t)‖2 − ‖p(t)− q(t)‖2

∆t · ‖p(t)− q(t)‖2 =

lim
∆t→0

‖p(t+ ∆t)− r(t+ ∆t)‖2 − ‖p(t)− r(t)‖2

∆t · ‖p(t)− r(t)‖2 ⇒

1

‖p(t)− q(t)‖2 · lim
∆t→0

‖p(t+ ∆t)− q(t+ ∆t)‖2 − ‖p(t)− q(t)‖2

∆t
=

1

‖p(t)− r(t)‖2 · lim
∆t→0

‖p(t+ ∆t)− r(t+ ∆t)‖2 − ‖p(t)− r(t)‖2

∆t
⇒

1

‖p(t)− q(t)‖2 ·
∂ ‖p(t)− q(t)‖2

∂t
=

1

‖p(t)− r(t)‖2 ·
∂ ‖p(t)− r(t)‖2

∂t
.

By differentiating ‖p(t)− q(t)‖2 and ‖p(t)− r(t)‖2, Eq.3.2 will be derived,

〈p(t)− q(t), Xp(t)−Xq(t)〉
‖p(t)− q(t)‖2 =

〈p(t)− r(t), Xp(t)−Xr(t)〉
‖p(t)− r(t)‖2 . (3.2)

Now the conformal part of the deformation can be defined as,

Tp(X) = 〈p(t)− q(t), Xp −Xq〉 · ‖p(t)− r(t)‖2 − 〈p(t)− r(t), Xp −Xr〉 · ‖p(t)− q(t)‖2 .

(3.3)

Likewise, Tq(X) and Tr(X) are calculated. To preserve angles of each triangle ∆pqr, a

similarity transformation requires that all Tp(X), Tq(X) and Tr(X) vanish during deformation,

thus the following metric is obtained for the conformal deformations.

T∆pqr(X) = |Tp(X)|+ |Tq(X)|+ |Tr(X)| .

Finally the Angle Preserving metric can be achieved as,
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〈〈X,Y〉〉APM =
∑

∆pqr∈M

T∆pqr(X) · T∆pqr(Y). (3.4)

Indeed, this metric takes out the conformal part of the deformation and measures the dis-

tance between two shapes based on the non-conformal part of the deformation.

3.2.2 Quasi-conformal metric (an improvement on the angle-preserving

metric)

Although the current metrics can measure the characteristics of many kinds of deforma-

tions, there are still more non-conformal deformations for which we are interested to define a

shape space, whose geometry more accurately reconciles to the characteristics of these non-

conformal deformations. For instance, during the heart deformation, one part of the heart

expands while the other portion contracts, meaning the heart deformation is not conformal in

the strict sense. This necessitates a quasi-conformal shape space which better preserves these

non-conformal deformation characteristics.

To produce the quasi-conformal metric, we take the changes of the curvature at each vertex

into account such that a vertex with lower change in curvature has less effect in the final value

of the metric. Let Kp be the curvature at vertex p before deformation. The curvature of an

interior vertex can be approximated as,

Kp = 2π −
∑

∆pqr∈M

θqrp ,

If the vertex is a boundary vertex the curvature is,

Kp = π −
∑

∆pqr∈M

θqrp ,

where, θqrp is the corner angle attached to the face ∆pqr and can be achieved by the cosine

law depending on the background geometry. If the edge lengths satisfy the triangle inequality,
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‖p− q‖+ ‖q − r‖ > ‖p− r‖, then the corner angle θqrp is calculated as,

‖q − r‖2 = ‖q − p‖2 + ‖p− r‖2 − 2 ‖q − p‖2 · ‖p− r‖2 · cos
(
θqrp
)
.

Now the conformal part of the deformation which takes into account the changes in the

local curvature is as follows,

T̃p(X) = ∆Kp ·
[
〈p− q,Xp −Xq〉 · ‖p− r‖2 − 〈p− r,Xp −Xr〉 · ‖p− q‖2] ,

Likewise, the values of T̃q(X) and T̃r(X) are calculated. As in the conformal metric,

T̃∆pqr(X) =
∣∣∣T̃p(X)

∣∣∣+
∣∣∣T̃q(X)

∣∣∣+
∣∣∣T̃r(X)

∣∣∣ .
Finally the quasi-conformal metric is,

〈〈X,Y〉〉QCM =
∑

∆pqr∈M

T̃∆pqr(X) · T̃∆pqr(Y). (3.5)

In this way, not only are the changes of the curvature of each vertex measured, but also the

complexity of the final metric would be reduced.

3.2.3 Energy optimization

To find the shortest path connecting two points on a manifold, the integral of the first

fundamental form of the manifold is minimized.

E(M) =

∫
〈〈X,X〉〉M dt.

In a triangular mesh, the summation of the edge lengths connecting two vertices are mini-
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Figure 3.3: The main pipeline of the classification framework.

mized, which yields the following energy function [58],

E(M) =
∑
i

(
〈〈Xi,Xi〉〉Mi

+ 〈〈Xi,Xi〉〉Mi+1

)
,

where Mi is the ith vertex of the polygon inscribed on the curve and Xi is the ith edge of

the polygon. The intermediate vertices of the polygon are changed to minimize the energy

function.

3.3 The Deformation Analysis Framework
Based on the shape deformation an algorithm is proposed to classify the deformation of

shapes. Fig. 3.3 shows the pipeline of our algorithm. In first step, we find the best rigid

alignments of the triangular meshes at sequential time points. The more accurate the rigid

alignment, the more accurate the deformation classification is. The following describes the rest

of the pipeline in details.

3.3.1 Temporal Interpolation

To estimate the deformation of an object some time-varying samples should be taken from

the object during the deformation. In some scenarios, the temporal sampling might not be

satisfactory. In order to improve the temporal resolution of the sampling, the interpolation step

is necessary. The algorithm to interpolate the deformation is as follows.

Suppose two sequential meshes Mi and Mi+1 represented by two sequential points on the

deformation curve in shape space and Pi is the ith intermediate mesh. The average point of the

pair of points is considered as an initial intermediate point. Then by minimizing the energy

functional E(M), the intermediate point is determined more accurately reflecting the applied
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Input: Initial meshes Mi and Mi+1

Output: Interpolated meshes {P1, ...,Pn}
M← {Mi, (Mi + Mi+1)/2,Mi+1};
while Number of intermediate meshes is reached do
{P1, ...,Pn} ← argminE(M);
M← {Mi, (Mi + P1)/2,P1, ...,Pn,Mi+1};

end

metric. In the next step, some other initial intermediate points may be entered to the energy

functional and all the intermediate meshes will be finally optimized together. As mentioned

in [58], some other consideration may be taken into account to speed up the optimization

procedure and find the local minimum quickly. In our framework, a multiresolution approach

is employed. For instance, we use the coarse meshes as initial meshes, and the local minimum

search is achieved quickly in this case. Then, the vertices of these coarse meshes will work as

initial vertices for other finer meshes. Thus, the intermediate refined meshes can be obtained

more reliably in this way, rather than having problems to optimize high resolution intermediate

meshes, which may take long time to complete.

3.3.2 Deformation Transfer

Two deformations are comparable, if their deformation curves are transferred to the same

part of shape space. In the Euclidean shape space, this is simple and will not change the

curve, but in non-Euclidean shape space, the parallel transport approach is employed for the

deformation transfer (Fig. 3.4).

Let M be an immersion on the shape space manifold G. We sample the deformation path at

equidistant points Mi, thus the line segments connecting each pair of sequential samples will

be Xi = ∆Mi (i.e., a discrete tangent vector). The deformation of M is transferred to the point

N0 such that M0 is mapped to N0.

Let the curve γ0 : [0 1] → G be the geodesic line on the shape space manifold connecting

M0 = γ0 (0) to N0 = γ0 (1), and X0(t) be a vector field along γ0 at time t. X0(t) is called

parallel if the angle α0 = 〈〈X0(t), γ′0(t)〉〉γ0(t) is constant, provided X0(t) rotates minimally
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(a)

(b)

Figure 3.4: The deformations should be transferred to the same part of shape space using
Parallel Transport approach; otherwise, they are not comparable. Here, the deformation M
is transferred to the point N0 along the geodesics on the manifold. (a)The first step, M1 is
transferred to N1, (b) the second step, M2 is transferred to N2.

around γ′0(t). We take some samples along γ0 and calculate X0(t) at the discrete time points

as follows,

min
X̄

∥∥X̄ −X0(ti)
∥∥2
,

subject to:

α0 =
〈〈
X̄, γ′0(ti+1)

〉〉
γ0(ti+1)

,

Where X̄ yields X0(ti+1). Once X0(t) is transferred along γ0, N1 = N0 + X0(1) is achieved
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(Fig. 3.4.a).

In the second step, the geodesic line γ1 connecting M1 to N1 is calculated and the vector

X1(0) is transferred along it to achieve X1(1) and N2 = N1 + X1(1) (Fig. 3.4.b). We keep

transferring deformation segments until all the segments are transferred [58].

3.3.3 Dimension Reduction

At this point, all deformation paths have been transferred to the same part in shape space.

But high dimensional shape space prohibits an intuitive perception of deformation comparison.

As a result, redundant dimensions of shape space should be eliminated such that the projected

deformation paths are as similar as possible to the original deformation paths. Some methods

such as PCA, Factor Analysis and ICA are low cost linear methods but they can not reveal the

geometry of shape space, due to non-linearity of the shape space manifold.

In some other dimension reduction methods such as Multidimensional scaling, Isomap,

Locally Linear Embedding, a non-linear cost function is minimized to extract the most infor-

mative dimensions. These methods are more likely to fulfill the needs of shape space, since

they minimize a non-linear cost function which better estimates the main features on a non-

Figure 3.5: Two deformation paths projected on the 2D spatial space after being transferred to
the same part of the shape space.
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linear shape space manifold. Towards this end, a distance matrix demonstrating distance of

each pair of meshes is built based on the defined metric. Then, the MultiDimensional Scaling

(MDS) method is employed to reduce dimensions of shape space and project deformation paths

onto a 2D space, called the 2D spatial space. Fig. 3.5 illustrates two deformation paths after

being projected on the 2D spatial space. On the 2D plane, one can better perceive the similarity

between them.

3.3.4 Deformation Classification

Although deformations take place in time but we do not have any consideration about time

in this deformation structure. To address this issue, time is added to the 2D spatial space, as the

third dimension. We call this new 3D shape space, spatiotemporal space. Finally, the Locally

Linear Embedding (LLE) method is used to map 3D deformation curves onto a 2D plane such

that each point in this 2D plane corresponds to one deformation curve in the spatiotemporal

space. The more similar two deformations, the closer their corresponding points are in the

2D plane. By adding time as the third dimension to the 2D spatial space rather than to the

original shape space, time would have more effect in the final deformation projection process

as a naturally different dimension.

Fig. 3.6.a illustrates two deformation paths in the 3D spatiotemporal space. Although, the

two deformations look different in the 3D space but their similarity is revealed when they

are projected onto the 2D plane which is constituted by one of the spatial dimensions and

time. Indeed, the deformations follow the same pattern which could not been recognized in the

spatiotemporal space (Fig. 3.6.b).

3.4 Experiments on Synthetic Datasets
Some genus zero and one models are deformed in accordance with different deformation

patterns, thus the point correspondence between consecutive poses is known beforehand. Dif-

ferent experiments on the synthetic datasets evaluate its performance on deformation classifi-

cation and its resistance against additive noises.
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(a)

(b)

Figure 3.6: Two deformation paths are (a) in the 3D spatiotemporal space projected, (b) The
two deformations projected onto the 2D plane.

3.4.1 Shape Interpolation

Two poses of the models serve as input poses and the intermediate poses are interpolated

by the aforementioned algorithm. Fig. 3.7 shows the deformations of a torus and a sphere,

which are interpolated using the proposed metric. The leftmost and rightmost poses in each

row are the input poses, and three intermediate poses are the interpolated poses. As seen in

Fig. 3.7.c and d, only the upper hemisphere deforms during the deformation and the lower part

is still. Therefore, the upper part has more effect on the final energy functional as its curvature
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changes more than that of the lower part. In other words, the upper hemisphere accounts for

the geodesic distance of the sequential poses in shape space more than the lower hemisphere.

3.4.2 Deformation Transfer

To have different deformations comparable in shape space, their deformations are trans-

ferred to the same part of shape space. Towards this end, some models are deformed non-

conformally; and then, their deformations are transferred to other models. The more accurately

the non-conformal deformations are followed by the second model without distortion, the better

the metric can estimate the intrinsic geometry of shape space and preserve the invariant char-

acteristics of the models during deformation. Fig. 3.8.a and c demonstrates two non-conformal

deformations of a sphere and a torus, which are followed by an ellipsoid (Fig. 3.8.b) and a

deformed torus (Fig. 3.8.d), respectively.

Although the sphere deforms non-conformally, the ellipsoid can accurately follow the de-

(a)

(b)

(c)

(d)

Figure 3.7: The interpolation of a-b) a torus and c-d) a sphere deformation using the metric.
Two poses at two ends of each row are the input poses and the middle poses are the interpolated
ones.
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formation, and the quasi-conformal metric can circumvent the local minima during optimiza-

tion of the energy functional by learning the geometry of shape space. We applied the defor-

mation transfer method based on our metric on 60 deformations, all of which were successfully

followed by different objects.

3.4.3 Deformation Classification

In the next step, some different deformations are applied on a torus and classified by the

classification algorithm. Since we classify the synthetic datasets, the corresponding points

on different meshes are known. Fig. 3.9 illustrates classification of different deformations of

(a)

(b)

(c)

(d)

Figure 3.8: a) The non-conformal deformations of a) a sphere and c) a torus within three
time points from left to right, which are followed by b) an ellipsoid and d) a deformed torus,
respectively. The leftmost poses in the figures (b) and (d) are the input poses following the
deformations in (a) and (c).
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a torus, in which only the representative deformations are shown next to solid dots, and the

deformations corresponding to the soft dots are not depicted due of lack of space. As seen, the

similar deformations will be close together in the 2D plane.

3.4.4 Noise Resistance

Due to the acquisition procedures, some datasets might contain some noise, thus one aspect

of classification is about how accurately a classifier can classify noisy datasets. To evaluate

this, the points corresponding to different deformations in the 2D plane are classified into some

classes by the k-means clustering algorithm. Let K be the set of all points corresponding to all

deformations and ki be the set of points classified in the group ith by the k-means method. In

addition, let ki belong to the set ki, and li be its assigned label. Eq.3.6 calculates the statistic τ

quantifying the performance of the algorithm as follows,

τ =

∑
i |{ki ∈ ki | li = i}|

|K|
. (3.6)

Figure 3.9: The classification of different deformations applied on a torus such that each dot
corresponds to one deformation (Two axes are first and second coordinates of LLE). Each
deformation is illustrated by three poses at three consecutive time points, the leftmost pose is
the initial pose and the two right poses are the next sequential poses.



www.manaraa.com

41

Table 3.1: Performance of the algorithm against noisy datasets with different percentages of
additive noise variance

Noise
Vari-
ance

Uniform
Noise

Gaussian
Noise

Poisson
Noise

1% 99.6% 99.4% 99.2%
2.5% 99.3% 97.3% 97.2%
5% 96.0% 94.4% 95.1%
10% 90.1% 88.8% 89.0%
20% 74.7% 72.9% 73.2%

Table 3.1 represents the algorithm performance against additive noises with different dis-

tributions, which were added to the synthetic genus zero or one meshes with zero, one or two

boundaries. As can be seen, the percentage of misclassified deformations is acceptable up to

10% of additive noise, meaning the pattern of deformations of topologically different meshes

can be detected well. Besides the algorithm shows better performance against the uniform

noise compared with the noise with either Gaussian or Poisson distribution.

3.5 The Application of Shape Space Techniques for Func-

tional Analysis of Cardiac Images
The Cardiovascular Disease (CVD) is the number one cause of death in the United States

[26]. There are some information acquisition techniques available to understand cardiac mo-

tions and their relationship to CVD. The heart has four chambers, the right atrium (RA), right

ventricle (RV), left atrium (LA), and left ventricle (LV), whose functions are to pump blood

throughout the body [Fig. 3.10].

In this section, some conventional heart diagnostic techniques are introduced along with

some cardiac imaging techniques. Then, the classification of the left ventricle deformation is

carried out using the proposed quasi-conformal shape space.
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3.5.1 Eectrocardiogram(ECG)

The electrocardiogram (ECG or EKG) is a diagnostic tool that measures the electrical ac-

tivity of the heart (Fig. 3.11). By interpretation of the ECG signals, cardiologists can diagnose

different cardiovascular diseases, such as supraventricle arrhythmias, ventricle arrhythmias,

atrial enlargement (hypertrophy), ventricular enlargement (hypertrophy), myocardial ischemia

and infarction, and so on.

The electrical activity results in P, QRS, and T waves, which show a wide range of abnor-

malities of both the electrical conduction system and the muscle tissue of the chambers. How-

(a)

(b)

Figure 3.10: (a) Diagram of the heart, (b) The MRI images of the heart in the three axial,
coronal, and sagital views.
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Figure 3.11: Form of ECG signal.

Figure 3.12: This schematic represents the heart in the chest. The slices are illustrated in (a)
the short axis view, (b) the vertical long axis view, (c) the horizontal long axis view.

ever, the interpretation of the ECG signals needs to be verified with other diagnostic methods.

3.5.2 Cardiac Axis

In the cardiac imaging techniques the heart is shown from three different views (Fig. 3.12),

1. Short Axis (SA ): Short Axis images cut through the left ventricle from the apex to the

base,

2. Vertical Long Axis (VLA): Vertical Long images cut the left ventricle from the septal wall
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to the lateral wall,

3. Horizontal Long Axis (HLA): Horizontal Long images cut through the left ventricle from

the posterior wall to the anterior wall.

3.5.3 Heart image acquisition techniques

- Angiocardiography: First a contrast medium is injected and guided to the lesion to be

enhanced by placing a catheter, and then the X-ray image of the heart is acquired (Fig. 3.13).

Angiocardiography is usually good at anatomic delineation of lesions and to assess ejection

fraction (EF) based on simplified geometric models of the LV [57].

-Cardiac Ultrasound: Some pulsed ultrasound waves are applied on the body over the skin,

and their echo with respect to blood velocity and direction of flow is mapped over the 2D or

3D image [70]. This technique reveals the anatomy and movement of the heart non-invasively

(Fig. 3.14).

-Isotope Imaging: This technique is mostly used to study ejection fraction [31], regional

wall motion analysis of the left ventricle [25]. There are two types of Isotope imaging. 1.

first-pass studies: The first passage of the injected contrast through the heart is illustrated by

2D images, 2. gated equilibrium studies: the tracer mixed with the blood before data collection

is shown by 2D or 3D images (Fig. 3.15).

Figure 3.13: The angiocardiography image of the heart vessels.
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Figure 3.14: The four chambers of the heart are illustrated in the cardiac ultrasound image of
the heart.

-Cardiac CT: Spiral CT, ultrafast CT are used for cardiac CT imaging, which produce real

time multiple cross sections, 3D images of cardiac chambers, and information on coronary

calcium deposits [73] (Fig. 3.16).

-Cardiac MRI: MRI is vastly used to extract the anatomical and functional information

of the RV and LV [64], wall-thickening, myocardial motion, and circumferential shortening

of myocardial fibers [67]. MRI is capable of acquiring multiple imaging planes with high soft

tissue contrast between the blood and myocardium non-invasively. The Tagged-MRI technique

is used to track the myocardium deformation over time (Fig. 3.17).

Figure 3.15: The isotope image of the left ventricle.
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Figure 3.16: The CT image of the heart.

3.6 Experimental Results
As aforementioned, the Electrocardiogram (ECG) is a bioelectrical signal recording the

electrophysiological behavior of the heart over time. By interpretation of the ECG signal, the

cardiologist can diagnose various heart diseases.

However, in most cases the cardiac diagnosis needs to be verified with other diagnostic

methods like x-ray, coronary angiography, radiocardiographic imaging, ultrasound, and so on.

In these methods, the cardiologists diagnose the heart using some 2D images, which requires

much experience and skill for accurate diagnosis. To lower the likelihood of wrong diagnosis,

the heart images are shown in 3D view rather than 2D, which is more informative and circum-

vents the need for highly experienced cardiologists. However, navigating through sequential

poses of a deformation in 3D might be inconvenient for human. This urges a deformation anal-

Figure 3.17: The cardiac MRI.
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(a)

Figure 3.18: The gated images of the left ventricle at some time points.

ysis method which analyzes and classifies the 3D heart deformations. Our experimental results

show that the shape space has the potential to classify the left ventricle deformation.

3.6.1 Data Acquisition and Preparation

A total of 23 gated images of the left ventricle during one heart cycle were acquired from

some subjects (9 healthy and 14 patients). Each dataset contains 8 poses of the resolution

128 × 128 × 47mm3 (Fig. 3.18). To classify the left ventricle deformations, the left ventricle

surface should be extracted beforehand (Fig. 3.19). The preprocessing procedure includes the

following steps,

• Blurring the input image: Due to noise in the gated images, we blur them using some

(a) (b)

Figure 3.19: (a) The diagram of the human heart, (b) the left ventricle, labeled in cyan, is
extracted from the heart to generate the 3D mesh.
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Gausisan filters,

• Alignment of horizontal and vertical long axis with the z axis: The blurred 3D image is

reoriented to align the horizontal and vertical long axis with the z axis,

• Surface extraction: The surface of the high intensity portion of the image is extracted

by the Marching Cube algorithm; this portion mostly includes the left ventricle and the

liver.

• Manually editing of the extracted surface: In the extracted surface, the liver is attached

to the left ventricle; therefore, in this step, the liver is removed manually and the surface

of the left ventricle is achieved.

• Surface normalization: In the last step, the dataset of each deformation is transferred to

the origin and normalized to a unit bounding box.

As mentioned, during each heartbeat cycle, 8 sequential cardiac images are acquired. Fig. 3.20

represents 8 meshes, from left to right, corresponding to the LV deformation at sequential time

points. Notice that the poses at time points 7 and 3 correspond to the end of diastole and end

of systole, respectively.

3.6.2 The Experimental Results of the Quasi-Conformal Shape Space

After extraction of the left ventricles sequential meshes, the intra-subject and inter-subject

registrations are performed to find the corresponding points among meshes.

To accomplish this, a total of 16 landmarks are chosen on meshes manually (Fig. 3.21), and

then the constrained thin plate spline method is used to perform the registration ([106], [23]).

As can be seen in Fig. 3.21.a, the area connecting the left ventricle to the right one is cut to

make a boundary, which is used to set the landmarks.

The left ventricle deformation can be divided into four parts as (i) clockwise rotation, (ii)

contraction (iii) expansion, (iv) counter clockwise rotation (Fig. 3.22.b). The projected defor-

mation of the left ventricle confirms the previous argument in 2D projection (Fig. 3.23).
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Shown by circles in Fig. 3.23, the normal datasets are almost located in the same part of

the 2D plane using the classification algorithm.

Fig. 3.24 demonstrates the normal and abnormal deformations in the 3D spatiotemporal

space, in which the normal deformations follow the same pattern, which causes their corre-

sponding points in the 2D plane to be close to each other. In fact, adding the extra temporal

dimension is necessary, as it takes into account the speed of the deformation which is of utmost

importance in heart diagnosis.

3.7 Summary
An algorithm is presented to classify and compare deformations based on a novel quasi-

conformal metric in shape space. To make deformation paths intuitively comparable in shape

space, the deformations are transferred and projected onto a 2D plane, where each point cor-

responds to one deformation. The results on synthetic datasets verify the performance of the

classification framework.

(a)

Figure 3.20: Eight poses, from left to right, corresponding to the LV deformation during one
heart cycle.
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Figure 3.21: The landmarks are chosen, a) on the boundary, b) inside the ventricle.

Note that if the temporal resolution of the poses is acceptable, the interpolation step can

be skipped, thus the rest of the pipeline is executed in O (n2) time. Otherwise, to increase the

temporal resolution a nonlinear function should be optimized, whose complexity is O (mn),

where n is the number of meshes, each having m vertices. Thus, the total time complexity of

the pipeline is O (mn) + O (n2). Since each point of shape space corresponds to one mesh

in R3, we can easily retrieve the intermediate meshes [99]. To speed up the algorithm, we

employ the space refinement, in which the spatial resolution of meshes is increased iteratively,

(a)

Figure 3.22: The 2D spatial shape space shows the deformation path of the heart deformation
along with the projections of 8 sequential poses onto the spatial shape space (red squares).
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Figure 3.23: The classification of normal (circles) and abnormal (crosses) subjects, in which
the two axes are the first two coordinates of LLE.

from coarser meshes to finer ones to get the intermediate poses. As in the methods based

on the functional energy minimization ([58], [44]), this method cannot guarantee that no self

intersection would occur during interpolation.

Cardiologists usually interpret electrocardiogram signals or use 2D images of the heart

for diagnosis, which requires high skill and experience and increases the chance of wrong

diagnosis. In contrast, representing the heart in 3D eases the accurate diagnosis procedure,

which in turn, requires a 3D deformation analysis method.

We applied our quasi-conformal shape space on the left ventricle deformation of some

healthy and patient subjects. The experimental results show the effectiveness of this classi-

Figure 3.24: Two normal subjects (squares and diamonds), and one abnormal subject (circles)
in the 3D spatiotemporal space.
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fication framework to differentiate normal and abnormal subjects based on the geometrical

information. Furthermore, the proposed method shows acceptable resistance against different

noises. This makes the method a powerful tool, as we use the gated images which might con-

tain either Poisson or Gaussian noise depending on the number of channels used during the

image acquisition.

However, automatic localization of the abnormality on the left ventricle is of great impor-

tance in the diagnosis procedure. In the next chapter, a new classification framework based on

the medial surface and thickness function is introduced which can spot the abnormality on the

left ventricle.
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CHAPTER 4

THE MEDIAL SURFACE SHAPE SPACE

The wall thickness is known as a valuable measure for the cardiac diagnosis. From the

geometrical point of view, it can be considered as a function on the 2D manifold of the medial

axis. Therefore, one can diagnose the heart by analyzing this non-linear manifold. This chapter

presents a novel classification method based on the shape space of the medial axis to diagnose

and spot the abnormality of the left ventricle.

4.1 Introduction
Non-linear shape models yield more accurate model and variations of the shape compared

with linear shape models which are combinations of local translations. The medial surface

model is a valuable framework to describe shape parameters such as local thickness and bend-

ing which do not belong to the Euclidean space. As these parameters belong to the Riemannian

symmetric space, linear shape analysis techniques do not apply to them. As aforementioned,

Kendall formulates shape spaces as complex projective spaces [56]. Shapes are constructed as

infinite-dimensional manifolds and their variations as the diffeomorphism action group ([32],

[68]). Some metrics are introduced on the space of planar curves ([69], [83]).

The medial locus is a means of representing the skeleton of a geometric object, which plays

an important role in the human perception [12]. The medial locus of a 3D object consists of the

centers of all spheres that are interior to the object and tangent to the object’s boundary at two

or more points. In fact, medial representation, m-rep, incorporates a rich mathematical theory

[21], which has many applications in the shape analysis and image processing [76].

Yushkevich et al introduce the parametric representation of the boundary-medial relation-

ship as two continuous parametric manifolds, which provide the ground to fit shape-based co-

ordinate systems to the interiors of objects [103]. Terriberry et al present a 3D medial surface
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based on subdivision surfaces, which is parameterized over a fixed domain and can support the

complex medial surface with more than one medial surface [93]. Sun et al applied the medial

model to the right and left ventricle datasets of some subjects and concluded that the medial

model can capture the deformation of the left and right ventricles along with the changes of

their wall thickness over time ([89], [88]).

Our contributions in this chapter can be summarized as follows,

• A novel shape space based on the medial surface and thickness function is introduced,

• Two shape descriptors are introduced which discriminate different deformations and spot

their differences,

• The effectiveness of the medial surface shape space is investigated for classification of

the left ventricle deformation.

• The proposed shape space can spot the abnormality on the left ventricle as well.

In this section, some global/local geometrical and physical measures of the cardiac diagno-

sis are described briefly.

4.1.1 Global Cardiac Volumetric Measures

Use of geometric models is not completely new to the analysis of cardiac images. The

traditional methods of obtaining parameters were based on geometrical models as follows,

• Left Ventricular Volume (LVV): To estimate the volume of the left ventricle, the LV

volume is modeled as the volume of a single shape (e.g., truncated ellipse), or as the sum

of multiple smaller volumes of similar configuration, or as a combination of different

figures [97].

• Left Ventricular Mass (LVM): LVM is mainly determined by two factors: chamber vol-
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ume, and wall thickness. LVM is defined as,

Vm = V epi
t − V endo

c ,

LVM = dm · Vm,

where dm = 1.05g/cm is the density of the muscle tissue, Vm is the myocardium volume,

V epi
t is the total volume contained within the epicardial borders of the ventricle, and

V endo
c is the chamber volume.

• Stroke Volume (SV): SV is the volume ejected between the end of diastole and the end

of systole,

SV = EDV − ESV,

where EDV is the end of diastolic volume, and ESV is the end of systolic volume.

• Ejection Fraction (EF): EF is a global measure of LV fiber shortening and the LV pump

function, which defined as,

EF =
SV

EDV
· 100% =

EDV − ESV
EDV

· 100%.

• Cardiac Output (CO): The quantity of oxygenated blood flow, called the Cardiac Output

(CO), is expressed as,

CO = SV ×HeartRate.

In patients with mitral or aortic regurgitation, or with extensive wall motion abnormali-

ties, the computed CO with angiocardiography is erroneous. The 3D imaging techniques

provide a potential solution to this problem.
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4.1.2 Local Cardiac Shape Descriptors

Three-dimensional model-based analysis of LV shape and motion has the potential of pro-

viding rich morphological and functional information. Current clinical assessment of cardiac

function is based mainly on global parameters as LVV and EF. However, some local shape

descriptors provide valuable information for the shape analysis.

• Strain Analysis (SA): The Strain Analysis is a method to describe the internal deforma-

tion of a continuum body. The reference state is an initial configuration with respect to

which the position of any point is measured to describe the deformation of a body.

Assume two neighboring myocardial points, {yi}, {yi + ∆yi}, move to {xi}, {xi + ∆xi},

respectively. Also, xi = yi+ui, where ui is the displacement. By taking the deformation

gradient, one can calculate the changes in length between the two neighboring points

before and after the deformation, that’s, dLy and dLx. Then,

dL2
x − dL2

y = 2
3∑
i=1

3∑
j=1

Eijdyidyj,

Where E is the strain tensor,

Eij =
1

2

(
∂ui
∂yj

+
∂uj
∂yi
−

3∑
k=1

∂uk
∂yj
· ∂uk
∂yi

)
.

• Mean and Gaussian Curvature: By analyzing Gaussian curvature (K = k1 · k2) and

the mean curvature (H = (k1 + k2) /2), one can locally distinguish between different

surface types, where k1 and k2 are the principal curvatures measure the maximum and

minimum bending of a regular surface. The distribution of the Gaussian curvature in the

LV at different phases of the cardiac cycle is structurally stable over time [27].

Whereas the LV free wall provides rich and dense curvature information, the curvature

at the septal wall is less suitable to establish point correspondences. Similar findings
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were made by Sacks et al. [81] with respect to the RV free wall: the RV free wall has

relatively uniform distribution of principal curvatures, and the surface geometry of the

RV free wall does not change significantly from end diastole to end systole.

• Shape Index and Shape Spectrum: Although mean and Gaussian curvatures are related

to the concept of curvedness, there still remains scale information in these shape descrip-

tors. To overcome this problem, Clarysse et al. [18] have used the shape index (s) and

the curvedness (c),

s =
2

π
· arctan

(
k1 + k2

k1 − k2

)
,

c =

(
k2

1 + k2
2

2

)
.

While c is inversely proportional to the object size, s defines a continuous distribution of

surface types ranging from cup-like umbilic (s = -1) to peak-like umbilic points (s = +1).

It is shown that s is invariant to orientation preserving similarity transformation, yet c is

not.

In [75], the shape spectrum is introduced as a global shape index,

γ (h, t) =
1

A

∫ ∫
S

δ (s (x)− h) .ds,

where

A =
∫ ∫

S
ds: The total area of the surface S, ds: An small region around the point x,

δ (·): The Dirac delta function.

• Local stretching: A conformal motion can be described as a spatially-variant but locally

isotropic stretching factor. The local stretching factor τ is computed from the change in
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Gaussian curvature and a polynomial stretching model as,

K̄ =
K

τ 2
+
f (E,F,G, τ, τu, τv, τuu, τvv)

τ 2
,

where

f (·): A linear or quadratic polynomial stretching model,

E, F, G: coefficients of the first fundamental form,

(u, v): coordinates of a local parameterization of the surface patch.

The local epicardial stretching factors computed over the cardiac cycle follow a similar

evolution to the temporal variation of the principal strains obtained using SA techniques.

• Wall Thickening (WT): Wall Thickening is studied in the detection of dysfunctional

myocardium, and is a sensitive indicator of dysfunctional contraction [3]. In some re-

searches, the local wall thickness (LWT) is defined as,

LWT =
Vc
A
,

where

Vc: The volume of the small cuboids element of the myocardium,

A: The average area of its endocardial and epicardial surfaces.

In many researches, the WT is computed from the centerline method [84]. Starting with

the endocardial and epicardial contours at each slice, the centerline method measures

WT in chords drawn perpendicular to a line that is equidistant to both contours (the

centerline) (Fig. 4.1). As a 3D extension of the centerline method, the medial surface

method makes use of a reference medial surface to compute the chords and subsequent

wall thickness [13].
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Figure 4.1: The WT is computed from the centerline method at each slice.

(a) (b)

Figure 4.2: (a) An atom has a position (x), radius (r), and two spoke directions (S0, S1), (b)
The regular atoms are non-boundary atoms of the medial surface (Red atoms).

4.2 The Medial Surface
In the m-reps framework, the medial surface consists the centers of the inscribed spheres

and two or three vectors, called spokes, from the sphere centers to the two or three tangent

points on the object boundary. Indeed, the medial surface is a topological disk with a smooth

edge, which is constituted by the medial locus.

An atom contains a position (x), radius (r), two spokes (S0, S1) (Fig. 4.2). Thus an atom

can be represented by (x, r, S0,S1) ∈ R3 × R+ × S2 × S2, and its corresponding boundary

points y0, y1 can be achieved as, y0 = x + rS0, y1 = x + rS1, where S0, S1 are of lengths rS0,

rS1, respectively.

An end atom is a kind of atom that is located on the boundary of the medial surface, and

has an extra spoke in the bisector direction, b, whose length is ηr, where η is in [1 1/ cos(θ)]
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(a) (b)

Figure 4.3: (a) An end atom has a position (x), radius (r), and three spoke directions (S0, S1,
ηrb), (b) The end atoms are on the boundary of the medial surface (Gray atoms).

(Fig. 4.3). If η = 1/ cos(θ), the boundary is sharp, and if η = 1, the boundary is circular. The

atoms can be thought as control points on a continuous medial surface. Indeed, the continuous

medial surface are extended beyond the end atoms to the boundary of the object, where the

boundary of the continuous medial surface is achieved by y0, y1 and their corresponding normal

vectors S0, S1 [95]. A medial structure needs to hold some conditions to imply a legal boundary

without any singularity [21].

4.3 The Exponential Map
A group action is a transformation of the manifold M, just as matrices are transformations

of the Euclidean space. A Lie group G is a differentiable manifold which describes the transfor-

mations of smooth manifolds, and forms an algebraic group (the tangent space to the identity

element of G) such that both Inverse and Multiplication operations are differentiable mappings

as well [61],

Multiplication : (x, y) ∈ G×G→ xy ∈ G,

Inverse : x ∈ G→ x−1 ∈ G.

For instance, rotations, translations, and affine transformations in Rn are some Lie groups.
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In fact, the Lie group actions are used to compute the geodesic on the Riemannian symmetric

spaces such as Euclidean space, Rn, spheres, Sn, and hyperbolic space, Hn.

Definition: The isotropy subgroup of the base point b ∈ M is the subgroup of G which

leaves b fixed, that’s, Gb = {g ∈ G : g · b = b}.

Theorem 1: Let M be a symmetric space and let the isometry group G act transitively on

M. Then the map,

ϕ : G/Gb →M,

is a diffeomorphism [86].

Corollary 1: Every symmetric space M is geodesically complete, i.e., any two points in

the same path component of M can be connected by a geodesic [52].

Let M be a complete Riemannian manifold, which implies there exists a geodesic between

each pair of points on M. Let v ∈ TxM be a tangent vector, thus there exists a unique geodesic

γv(t), where γv(0) = x and γ′v(0) = v. The exponential map Expx(v) : TxM → γv(t) maps

the vector v to a point on the geodesic γv(t). The exponential map preserves the distance from

the initial point x, that’s, d(x,Expx(v)) = ‖v‖, thus it is a diffeomorphism in a neighborhood

of zero. Its inverse on the Riemannian manifold is called Log map, Logx. Let x, y ∈M be two

points in a neighborhood on M, then the geodesic between x and y is d(x, y) = ‖Logx(y)‖.

4.3.1 The Exponential map on S2

For the sphere S2 with the base of p = (0, 0, 1), the Exponential map on S2 is,

Expp(v) =

(
v1 ·

sin ‖v‖
‖v‖

, v2 ·
sin ‖v‖
‖v‖

, cos ‖v‖
)
, (4.1)

where v = (v1, v2, 0) ∈ TpS
2 is a tangent vector in the plane x-y (Fig. 4.4). Inversely, the Log

map the point x = (x1, x2, x3) ∈ S2 on the tangent plane TpS
2 is,

Logp(x) =

(
x1 ·

θ

sin(θ)
, x2 ·

θ

sin(θ)

)
, (4.2)
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Figure 4.4: The exponential map of the tangent vector v on the sphere S2.

where θ = arccos(x3) is the spherical distance between the point p and x. Indeed, S2 is a

symmetric space, which can be written as S2 = SO(3)/SO(2), where SO(2) is the isotropy

subgroup of p which contains all rotations about the z axis. According to Corollary 1, S2 is

a complete space; therefore, every two points can be connected to each other by a geodesic,

which is the great circle passing through p.

4.3.2 The geodesic distance between the medial surfaces

Let M = {R3 × R+ × S2 × S2} be the symmetric space of the medial atoms, and the Lie

group G = {R3 × R+ × SO(3)× SO(3)} act on it smoothly as,

G×M→M : g ·m = (v, s,R0,R1) · (x, r, S0,S1) = (x + v, r · s,R0 · S0,R1 · S1) .

If the base atom b ∈M is {(0, 0, 0), (1), (0, 0, 1), (0, 0, 1)}, the isotropy subgroup Gb is,

{(0, 0, 0)× (1)× SO(2)× SO(2)} .
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According to Theorem 1, the medial surface is diffeomorphic the quotient space,

G/Gb =
{
R3 × R+ × SO(3)/SO(2)× SO(3)/SO(2)

}
.

Let p = [(0, 0, 0), (1), p0, p1] ∈ {R3 × R+ × S2 × S2} be the base point, p0 = p1 = (0, 0,

1), and u = [x, r, v0, v1] be the tangent vector of M, where v0 and v1 are the spherical tangent

vectors. Therefore, the exponential of the medial surface is,

Expp(u) =
{

x, er, Expp0
(v0), Expp1

(v1)
}
,

where Expp0
(v0), Expp1

(v1) are the two spherical exponential maps defined in Eq.4.1. The

corresponding Log map of m = (x, r, S0,S1) ∈M is,

Logp(m) =
{

x, log(r), Logp0
(S0), Logp1

(S1)
}
,

where Logp0
(S0), Logp1

(S1) are the two spherical log maps defined in Eq.4.2. In general, the

distance between two corresponding atoms m1 and m2 is,

d(m1,m2) = ‖Logm1(m2)‖ ,

where the norm of the tangent vector u = [x, r, v0, v1] achieved by the above log map is,

‖u‖ =

√
‖x‖2 + ρ · ‖r‖2 + ‖v1‖2 + ‖v2‖2,

where ρ is the average radius over all corresponding atoms. Accordingly, the geodesic distance

between two medial surfaces M1 and M2 each having n atoms is,

d(M1,M2) =
n∑
i=1

d(mi, ḿi), (4.3)
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where mi ∈M1 and ḿi ∈M2.

4.4 The Left Ventricle Shape Descriptor
This study aims to classify the normal and abnormal left ventricle (LV) deformations based

on the changes in the Wall Thickening (WT) of LV. Cardiomyopathy is the main cardiac disease

which affects the wall thickness and its functionality. There are three types of Cardiomyopathy

(Fig. 4.5):

• Dilated cardiomyopathy (DCM): A portion of the myocardium is dilated, often without

any obvious cause. In this condition, the heart becomes weakened and enlarged and

cannot pump blood efficiently [46].

• Hypertrophic cardiomyopathy (HCM): a portion of the myocardium thickened without

any obvious cause [78].

• Restrictive cardiomyopathy (RCM): The walls are rigid, and the heart is restricted from

stretching and filling with blood properly [1].

In many researches, the WT is computed from the centerline method. Here, in this study

the medial surface is computed, and its features are extracted during one heart cycle for each

(a) (b) (c) (d)

Figure 4.5: The diagram of a normal heart, (b) The heart with Dilated cardiomyopathy, (c) The
heart with Hypertrophic cardiomyopathy, (d) The heart with Restrictive cardiomyopathy.
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Table 4.1: The changes of the left ventricle wall thickness over time for healthy hearts and
hearts with cardiomyopathy

t1 and t2 are in Contraction
phase (t1 < t2)

t1 and t2 are in Expansion
phase (t1 < t2)

Healthy heart 1 < r(t2)/r(t1) r(t2)/r(t1) < 1
Portions with cardiomyopathy r(t2)/r(t1) ≈ 1 r(t2)/r(t1) ≈ 1

kind of cardiomyopathy.

Let M(t) be the medial surface at time t, and m(t) = {x(t), r(t),S0(t),S1(t)} ∈ M(t)

be an atom of M at time t. If the heart cycle is divided into two phases of contraction and

expansion, the changes of WT over time for a heart with cardiomyopathy and a healthy heart

are illustrated in Table 4.1.

In fact, the portion of the heart with cardiomyopathy cannot contract or expand as a healthy

heart, thus the proportion of the thickness (PT), r(t2)/r(t1), is roughly equal to one (Table 4.1).

It seems PT yields a good measure to spot the abnormalities on LV. However, due to ex-

istence of noise and trend in the acquired images, and also lack of accuracy in the extracted

medial surface, PT values of some atoms in the healthy subjects might be close to one as well.

This lowers the accuracy of PT as a reliable measure. To tackle this problem, two measures

are introduced which can confirm the accuracy of the PT values.

4.4.1 Average of the Normal Vectors (ANV)

Let M̂ be the set of all atoms whose PT values are around one. According to our experi-

ments, the portion of LV with cardiomyopathy looks like a patch (Fig. 4.6), and the direction

of the average of the normal vectors (ANV) in M̂ does not change so much over time.

Fig. 4.6.a illustrates the deformation of LV with an abnormality shown as a patch along

with its normal vectors. As mentioned, the portion of the LV having cardiomyopathy has PT

values roughly equal to one; the direction of ANV does not change considerably at sequential

time points, which is represented in Fig. 4.6.b.

In contrast, in the healthy LV’s, there might be some atoms whose PT values are close to
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(a)

(b)

Figure 4.6: (a) The medial axis of the LV at three time points from left to right along with the
normal vectors of atoms in M̂, different colors show different PT values. (b) The average of
the normal vectors (ANV) of the atoms in M̂ have roughly the same direction.

one. Nevertheless, as there is no abnormality patch as in the abnormal case, the atoms in M̂

change at different time points from one pose to another (Fig. 4.7.a), which results in ANV of

the atoms in M̂ being in different directions (Fig. 4.7.b).

4.4.2 Mean of the Positions (MP)

Another measure to confirm the accuracy of PT values is the changes of the positions of

atoms belonging to the portion with the cardiomyopathy. Let x be the position of the atom in

M̂. Since abnormality looks like a patch, the Mean of the Positions (MP) of atoms in M̂ is close

to the medial surface (Fig. 4.8.a), in contrast to the normal LV’s in which MP is not close to the

medial surface, since the atoms in M̂ are distributed all over the surface and there is no patch
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(a)

(b)

Figure 4.7: (a) The medial axis of the normal LV at three time points from left to right along
with the normal vectors of atoms in M̂, different colors show different PT values. (b) ANV of
the atoms in M̂ have considerably different directions.

(Fig. 4.8.b). In addition, the variance of the positions of atoms in M̂ is a good differentiating

measure. Nonetheless, out experiments show that MP can yield satisfactory results, thus in this

study we do not use the variance of the positions.

4.5 Construction of Shape Space
Based on the proposed shape descriptors, a new shape space is constructed in which each

point corresponds to one pose rather than one atom. Let M be the shape space manifold and
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(a) (b)

Figure 4.8: (a) In a LV with cardiomyopathy, the mean of position (MP) of atoms in M̂, shown
by a red solid dot, is roughly on the medial surface, (b) In a healthy LV, the mean is inside the
medial surface.

m ∈M be a point corresponding to one pose. The new shape space is,

m = (x̄, r̂ρ,Navg) ∈
{
R3 × R+ × S2

}
,

where x̄ and Navg are the MP and ANV of atoms in M̂, and

r̂ =
∏
M̂

(
ri+1

ri

)
,

is the multiplication of PT values over all atoms in M̂.

The introduced shape descriptor uses the normal vectors of the medial surface to confirm

the accuracy of PT values in different subjects. However, the medial surface as mentioned

before contains two spokes which are the normal vectors of the boundary, not of the medial

surface (Fig. 4.9).

To take this difference into account, the distance between each spoke and the corresponding

normal vector is measured by the log map as in Eq.4.2,

LogN(S) =

(
s1 ·

θ

sin(θ)
, s2 ·

θ

sin(θ)

)
,

where N is the normal vector of the medial surface, and S = (s1, s2, s3) is the spoke. The
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Figure 4.9: The extract medial surface contains two spokes which are perpendicular to the
boundary at y and y′, yet the proposed shape descriptor makes use of the normal vectors, N and
N′, of the medial surface .

average of log map distance between the normal vector N and the corresponding spoke S over

all the atoms in M̂ is,

ρ =

∑
M̂ LogN(S)∣∣∣M̂∣∣∣ .

4.5.1 Distance metric

To measure the distance between two points corresponding to two poses in the space M, we

use the log map distance mentioned before. Let m1 = (x̄1, r̂
ρ
1,N

avg
1 ) and m2 = (x̄2, r̂

ρ
2,N

avg
2 )

be two poses in M, and u1 is the tangent vector of M at point m1. As aforementioned, the

geodesic distance between m1 and m2 is d(m1,m2) = ‖Logm1(m2)‖. The log map is a distance

preserving mapping,

‖Logm1(m2)‖ = ‖u1‖ = 〈u1,u1〉
1
2 .

Let g = (v, s,R) be an element of G, then the group action is,

g ·m1 = (v + x̄1, s · r̂ρ1,R · N
avg
1 ) .
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As in the case of the medial space, the space M is a quotient space, that’s M = G/Gp,

where G is a connected group of isometries of M, that’s d(m1,m2) = d(g ·m1, g ·m2), and the

isotropy subgroup Gp is compact. Let p = [(0, 0, 0), (1), p0] ∈ {R3 × R+ × S2} be the base

point, where p0 = (0, 0, 1), and ḡ ∈ G maps m1 to p, that’s p = ḡ ·m1.

Since ḡ is an isometry, d(m1,m2) = d(ḡ ·m1, ḡ ·m2) = d(p, ḡ ·m2). It is obvious,

ḡ ·m2 = (x̄2 − x̄1,
r̂ρ2
r̂ρ1
,T · Navg

2 ),

where T is a rotation matrix, such that T · Navg
1 = p0. On the other hand,

Logp(ḡ ·m2) = (x̄2 − x̄1, log(
r̂ρ2
r̂ρ1

), Logp(T · Navg
2 ))

As in the medial surface space,

d(p, ḡ ·m2) = ‖Logp(ḡ ·m2)‖ =(
‖x̄2 − x̄1‖2 + ‖ρ2 · log(r̂2)− ρ1 · log(r̂1)‖2 + ‖Logp(T · Navg

2 )‖2
) 1

2
,

in which, ‖Logp(T · Navg
2 )‖ =

∥∥LogNavg
1

(Navg
2 )
∥∥. Obviously, the intermediate poses of an

abnormal LV are closer to each other using this metric than those of the normal LV.

4.6 Results on Synthetic Data
Some synthetic datasets are produced to assess the performance of the proposed shape

space. In the synthetic datasets, we assume that the extracted medial surfaces are 2D connected

surfaces and the thickness is a function on the surfaces. Then the 2D mesh is deformed in

accordance with a deformation pattern. The thickness function is also changed to simulate the

changes of wall thickness in LV. Fig. 4.10 illustrates a synthetic dataset which is similar to the

medial surface of LV during the expansion period. Therefore, the medial surface registration
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Figure 4.10: The medial surface is simulated by a 2D mesh and the thickness as a function on
the 2D surface.

can be circumvented, as the point correspondence is known beforehand.

As aforementioned, the end atoms are the ones on the boundary of the medial surface

having an additional spoke. Generally, the end atoms can unstable the image analysis task

[61]. To avoid such instability, the end atoms are ignored and only the regular atoms are being

used for the analysis purposes.

Some genus zero surfaces with one boundary are deformed in accordance with the LV de-

formation and different thickness functions are added as a function on the deforming surfaces.

After finding the locations in the shape space, the deformation paths are determined for each

deformation and projected onto a 2D using the MDS as mentioned before. As expected, the

poses of the abnormal deformations with a patch, Fig. 4.10, are close to each other on the 2D

plane, yet the normal subjects do not follow a specific deformation path.

4.6.1 Noise Resistance

Being noise resistance is a great concern in all medical imaging techniques; therefore, some

noises with uniform and Gaussian distributions are added to the datasets. Let K be the set of

all points corresponding to all medial surfaces and ki be the set of points classified in the group

ith. In addition, let ki belong to the set ki, and li be its assigned label. As in Eq.3.6, the statistic

τ quantifying the performance of the algorithm as follows,

τ =

∑
i |{ki ∈ ki | li = i}|

|K|
. (4.4)

Table 4.2 represents the algorithm performance against additive noises with different dis-
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Table 4.2: Performance of the algorithm against noisy datasets with different percentages of
additive noise variance

Noise Variance Uniform Noise Gaussian Noise

1% 88.6% 85.7%
2.5% 83.3% 82.0%
5% 77.0% 78.9%
10% 64.3% 73.1%

tributions, which were added to the synthetic medial surface. As can be seen, the percentage

of misclassified deformations is acceptable up to 5% of additive noise.

4.6.2 LV’s with multiple abnormalities

Although this method can classify the normal and abnormal subjects accurately but it con-

siders only one abnormality patch on the left ventricle. Indeed, the two proposed measures,

ANV and MP, yield good results, provided there is only one patch. Fig. 4.11 shows a patient

having two abnormality on two different parts of the left ventricle. The experimental results

show that the method wrongly classifies the subject as normal.

Fig. 4.12 illustrates a medial surface with two abnormalities, one on the apex and the other

on the lateral wall. If we use the method as before, MP might locate inside the medial surface

depending on the location of the patches. Furthermore, ANV might point to different directions

at different time points. As a result, the LV’s with two abnormalities will be classified as

Figure 4.11: The gated images of a patient with apical ischemia and with abnormality on the
lateral wall.
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Figure 4.12: The medial surface of a subject having two abnormalities on the apex and the
lateral wall shown as two blue patches. Different colors illustrate the thickness of the LV wall.

normal.

To tackle this problem, first we decompose the medial surface into some connected com-

ponents based on the wall thickness. Then, the deformation path of each connected component

is calculated as before. Therefore, a deformation path is constructed for each patch rather than

for each subject. In this way, we convert the medial surface with two patches to two medial

surfaces, each having one patch.

4.6.3 Abnormality size

Different patients might have abnormality patches of different sizes. Although, we did not

aim to determine the size of the abnormality but measuring the size of the abnormality can

reveal the severity of the disease. Fig. 4.13 shows a subject with small apical defect. Since

the abnormality is small, so is its corresponding patch on the medial surface. We tested our

method to see if it can differentiate very small or very large patches.

Fig. 4.14 shows the LV with three different patch sizes. If the patch is very large, MP of the

Figure 4.13: The gated images of a patient with a small apical defect.
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Figure 4.14: The medial surface classification is affected by the abnormality size. If the abnor-
mality is large (Left), MP of the patch is inside the surface; on contrary, if it is small (Right),
ANV might diverge away from each other.

patch might be inside the medial surface. If the patch is very small, ANV of the patch might

not converge to the same direction, but the corresponding MP’s are close to each other.

4.7 The Experimental Results of the Medial Surface Shape

Space
As mentioned, the change of the thickness of the left ventricle wall over time is a useful

feature to differentiate normal subjects from abnormal ones. Besides, automatic localization

of the abnormality on the left ventricle is of great importance in the diagnosis procedure. To

achieve these goals, the medial surface shape space is applied on the extracted left ventricle

meshes as explained before.

There are some many researches for 3D medial surface extraction. At the first step, the me-

dial surfaces of different poses are extracted and registered using the method proposed in [89].

Then the location of each pose in the medial surface shape space is calculated as mentioned.

Fig. 4.15.a shows the gated slice of a normal subject and Fig. 4.15.b illustrates the gated

slice of a patient with anterior wall ischemia. As expected, the abnormality looks like a patch,

thus the direction of ANV in the abnormality patch will not change so much over time, yet in

the normal subject ANV’s point to totally different directions.
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(a)

(b)

Figure 4.15: a) The gated images of a normal subject at two different time points, b) the gated
images of a patient with anterior wall ischemia.

Figure 4.16: The projection of two normal (red crosses) and abnormal (blue circles) subjects
onto the 2D plane using MDS. As seen, the normal deformation does not follow a specific
deformation pattern and its points are far from each other compared with the abnormal subject.
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The points corresponding to different poses of the LV medial surfaces might be close to

each other, if there is an abnormality patch on the LV; otherwise, they are far from each other

without following a specific deformation path on the 2D plane (Fig. 4.16). Indeed, the poses

of the abnormal subject have roughly the same ANV and MP.

4.8 Summary
The medial surface shape space is presented to classify and compare deformations based

on the changes of the wall thickness. Indeed, it is of great use to diagnose the left ventricles

with cardiomyopathy in which a portion of the left ventricle wall does not work normally and

the wall thickness is affected accordingly.

We employ the proportion of the thickness of the wall (PT values) which can spot the

candidate locations with the abnormality. To confirm the performance of the PT values, two

shape descriptors are introduced: 1. Average of the Normal Vectors (ANV), 2. Mean of the

Positions (MP).

The shape space constructed based on these two shape descriptors makes use of the log

map to determine the location of each pose in shape space and measure the distance between

each pair of poses.
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CHAPTER 5

CONCLUSION

5.1 Summary
The shape abstraction is of great importance to extract the information from the data. The

shape space shows a remarkable potential towards this goal. Many researchers measure the

dissimilarity between shapes after projection of the shapes onto the shape space and determine

their distance using a metric which preserves the interested geometrical property. However,

producing such a metric would be a great challenge.

In contrast, in this study, the concept of shape space is employed to classify different de-

formations. Given two different deforming objects, we try to determine the similarity between

their deformations not the objects themselves.

In the first method, a metric based on the Riemannian metric definition is introduced, which

preserves the curvature changes at each point of the manifold during the deformation, and a

new quasi-conformal shape space is constructed based on the proposed metric. As the shape

deforms, the corresponding points in shape space constitute a deformation path in a high di-

mensional space. As a result, to compare the deformations, one only needs to compare two

high dimensional curves in a non-linear manifold. To make the deformation paths comparable

in this non-linear space, we transfer them to the same part of the shape space manifold using

the parallel transport method. Finally, the high dimensional curves are projected onto 2D or 3D

space which makes it easier for the user to compare different deformations. The results on the

synthetic datasets show that the quasi-conformal metric along with the proposed classification

framework can classify and interpolate different non-conformal deformations.

Besides, the framework was employed to classify the deformation of the left ventricles. The

experimental results show that this method can classify the normal and abnormal deformations,
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which makes it a valuable assistant tool for the heart diagnosis.

Although, the first method can classify the left ventricle deformation but it cannot spot the

abnormality on the left ventricle. To address this drawback, we proposed the second method

based the changes of the left ventricle wall. Basically, the thickness of the left ventricle wall is

measured over time and proportion of the changes, called PT values, is compared at different

parts of the left ventricle. To confirm the performance of the PT values, two shape descriptors

are introduced: 1. Average of the Normal Vectors, 2. Mean of the Positions.

Finally the medial surface shape space is constructed which makes use of the log map. The

results on the synthetic and the left ventricle datasets show that the medial surface shape space

is a powerful method to classify different deformations and spot the abnormality on the left

ventricle.

5.2 Future Work
1. Diffusion Wavelet: The Diffusion Wavelets arise from a multiresolution structure in-

duced by a diffusion group acting on some space such as a manifold ([80][47]). Indeed,

the wall thickness can be considered as a function on the medial axis manifold. The dif-

fusion wavelet decomposition yields some bases representing the wall thickness function

with different space and frequency properties. Since our goal is to classify the deforma-

tion of the LV and spot the abnormality on the LV, the Diffusion Wavelets decomposition

shows good potential to construct the intended shape space. However, without common

bases it is impossible to compare different medial surfaces and the challenge is to find

some common wavelet bases to compare different deformations. Besides, different bases

localize the abnormality depending on the size and location of the abnormality. However,

selection of the best bases to spot the abnormality is another major challenge.

2. Teichmüller shape space and Conformal Geometry: Two surfaces are conformally

equivalent if there exists an angle-preserving map between them. The Teichmüller space
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for surfaces with the same topology is a finite-dimensional manifold, where each point

represents a conformal equivalence class. Wang et.al. [101] used the shape index based

on the Teichmüller space coordinates to produce the conformally equivalent classes,

which is used to study brain morphometry.

As mentioned in the chapter 3, the quasi-conformal metric can measure the geodesic

distance between normal and abnormal subjects. One potential approach is to use the

shape index and generate the deformation path of each subject in the Teichmüller space

for the deformation classification. However, there is one major drawback.

Since the extracted left ventricle mesh is a genus zero mesh with no boundary, the Te-

ichmüller space cannot be constructed for it, unless we removed one patch of the mesh

and make one boundary on the surface, which incurs some geometrical information loss.

Furthermore, the choice of the correct patch which preserves the consistency among dif-

ferent subjects is another major challenge.
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This study aims to classify different deformations based on the shape space concept. A

shape space is a quotient space in which each point corresponds to a class of shapes. The

shapes of each class are transformed to each other by a transformation group preserving a

geometrical property in which we are interested. Therefore, each deformation is a curve on the

high dimensional shape space manifold, and one can classify the deformations by comparison

of their corresponding deformation curves in shape space. Towards this end, two classification

methods are proposed.

In the first method, a quasi conformal shape space is constructed based on a novel quasi-

conformal metric, which preserves the curvature changes at each vertex during the deforma-

tion. Besides, a classification framework is introduced for deformation classification. The

results on synthetic and real datasets show the effectiveness of the metric to estimate the intrin-

sic geometry of the shape space manifold, and its ability to classify and interpolate different

deformations.

In the second method, we introduce the medial surface shape space which classifies the

deformations based on the medial surface and thickness of the shape. This shape space is

based on the log map and uses two novel measures, average of the normal vectors and mean of

the positions, to determine the distance between each pair of shapes on shape space.
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We applied these methods to classify the left ventricle deformations. The experimental re-

sults shows that the first method can remarkably classify the normal and abnormal subjects but

this method cannot spot the location of the abnormality. In contrast, the second method can

discriminate healthy subjects from patients with cardiomyopathy, and also can spot the abnor-

mality on the left ventricle, which makes it a valuable assistant tool for diagnostic purposes.
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